Copied to
clipboard

G = C22⋊C4×C3×C6order 288 = 25·32

Direct product of C3×C6 and C22⋊C4

direct product, metabelian, nilpotent (class 2), monomial

Aliases: C22⋊C4×C3×C6, C62.142D4, C23.9C62, C62.284C23, (C2×C4)⋊3C62, (C2×C62)⋊7C4, C6.81(C6×D4), C223(C6×C12), (C22×C12)⋊7C6, (C22×C6)⋊5C12, C6222(C2×C4), C233(C3×C12), C24.2(C3×C6), (C6×C12)⋊30C22, (C23×C6).11C6, C6.36(C22×C12), C22.4(C2×C62), (C22×C62).1C2, (C2×C62).85C22, C22.12(D4×C32), (C2×C6×C12)⋊5C2, C2.1(D4×C3×C6), C2.1(C2×C6×C12), (C2×C6)⋊10(C2×C12), (C2×C12)⋊11(C2×C6), (C22×C4)⋊3(C3×C6), (C2×C6).70(C3×D4), (C3×C6).298(C2×D4), (C2×C6).90(C22×C6), (C22×C6).77(C2×C6), (C3×C6).128(C22×C4), SmallGroup(288,812)

Series: Derived Chief Lower central Upper central

C1C2 — C22⋊C4×C3×C6
C1C2C22C2×C6C62C6×C12C32×C22⋊C4 — C22⋊C4×C3×C6
C1C2 — C22⋊C4×C3×C6
C1C2×C62 — C22⋊C4×C3×C6

Generators and relations for C22⋊C4×C3×C6
 G = < a,b,c,d,e | a3=b6=c2=d2=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, de=ed >

Subgroups: 564 in 396 conjugacy classes, 228 normal (12 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C2×C4, C2×C4, C23, C23, C23, C32, C12, C2×C6, C2×C6, C22⋊C4, C22×C4, C24, C3×C6, C3×C6, C3×C6, C2×C12, C2×C12, C22×C6, C22×C6, C2×C22⋊C4, C3×C12, C62, C62, C62, C3×C22⋊C4, C22×C12, C23×C6, C6×C12, C6×C12, C2×C62, C2×C62, C2×C62, C6×C22⋊C4, C32×C22⋊C4, C2×C6×C12, C22×C62, C22⋊C4×C3×C6
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C23, C32, C12, C2×C6, C22⋊C4, C22×C4, C2×D4, C3×C6, C2×C12, C3×D4, C22×C6, C2×C22⋊C4, C3×C12, C62, C3×C22⋊C4, C22×C12, C6×D4, C6×C12, D4×C32, C2×C62, C6×C22⋊C4, C32×C22⋊C4, C2×C6×C12, D4×C3×C6, C22⋊C4×C3×C6

Smallest permutation representation of C22⋊C4×C3×C6
On 144 points
Generators in S144
(1 76 80)(2 77 81)(3 78 82)(4 73 83)(5 74 84)(6 75 79)(7 144 138)(8 139 133)(9 140 134)(10 141 135)(11 142 136)(12 143 137)(13 57 31)(14 58 32)(15 59 33)(16 60 34)(17 55 35)(18 56 36)(19 27 49)(20 28 50)(21 29 51)(22 30 52)(23 25 53)(24 26 54)(37 102 45)(38 97 46)(39 98 47)(40 99 48)(41 100 43)(42 101 44)(61 111 67)(62 112 68)(63 113 69)(64 114 70)(65 109 71)(66 110 72)(85 95 103)(86 96 104)(87 91 105)(88 92 106)(89 93 107)(90 94 108)(115 129 123)(116 130 124)(117 131 125)(118 132 126)(119 127 121)(120 128 122)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 22)(2 23)(3 24)(4 19)(5 20)(6 21)(7 127)(8 128)(9 129)(10 130)(11 131)(12 132)(13 67)(14 68)(15 69)(16 70)(17 71)(18 72)(25 77)(26 78)(27 73)(28 74)(29 75)(30 76)(31 111)(32 112)(33 113)(34 114)(35 109)(36 110)(37 85)(38 86)(39 87)(40 88)(41 89)(42 90)(43 107)(44 108)(45 103)(46 104)(47 105)(48 106)(49 83)(50 84)(51 79)(52 80)(53 81)(54 82)(55 65)(56 66)(57 61)(58 62)(59 63)(60 64)(91 98)(92 99)(93 100)(94 101)(95 102)(96 97)(115 134)(116 135)(117 136)(118 137)(119 138)(120 133)(121 144)(122 139)(123 140)(124 141)(125 142)(126 143)
(1 63)(2 64)(3 65)(4 66)(5 61)(6 62)(7 44)(8 45)(9 46)(10 47)(11 48)(12 43)(13 50)(14 51)(15 52)(16 53)(17 54)(18 49)(19 56)(20 57)(21 58)(22 59)(23 60)(24 55)(25 34)(26 35)(27 36)(28 31)(29 32)(30 33)(37 139)(38 140)(39 141)(40 142)(41 143)(42 144)(67 84)(68 79)(69 80)(70 81)(71 82)(72 83)(73 110)(74 111)(75 112)(76 113)(77 114)(78 109)(85 122)(86 123)(87 124)(88 125)(89 126)(90 121)(91 116)(92 117)(93 118)(94 119)(95 120)(96 115)(97 134)(98 135)(99 136)(100 137)(101 138)(102 133)(103 128)(104 129)(105 130)(106 131)(107 132)(108 127)
(1 138 22 94)(2 133 23 95)(3 134 24 96)(4 135 19 91)(5 136 20 92)(6 137 21 93)(7 30 108 76)(8 25 103 77)(9 26 104 78)(10 27 105 73)(11 28 106 74)(12 29 107 75)(13 125 67 40)(14 126 68 41)(15 121 69 42)(16 122 70 37)(17 123 71 38)(18 124 72 39)(31 131 111 48)(32 132 112 43)(33 127 113 44)(34 128 114 45)(35 129 109 46)(36 130 110 47)(49 87 83 141)(50 88 84 142)(51 89 79 143)(52 90 80 144)(53 85 81 139)(54 86 82 140)(55 115 65 97)(56 116 66 98)(57 117 61 99)(58 118 62 100)(59 119 63 101)(60 120 64 102)

G:=sub<Sym(144)| (1,76,80)(2,77,81)(3,78,82)(4,73,83)(5,74,84)(6,75,79)(7,144,138)(8,139,133)(9,140,134)(10,141,135)(11,142,136)(12,143,137)(13,57,31)(14,58,32)(15,59,33)(16,60,34)(17,55,35)(18,56,36)(19,27,49)(20,28,50)(21,29,51)(22,30,52)(23,25,53)(24,26,54)(37,102,45)(38,97,46)(39,98,47)(40,99,48)(41,100,43)(42,101,44)(61,111,67)(62,112,68)(63,113,69)(64,114,70)(65,109,71)(66,110,72)(85,95,103)(86,96,104)(87,91,105)(88,92,106)(89,93,107)(90,94,108)(115,129,123)(116,130,124)(117,131,125)(118,132,126)(119,127,121)(120,128,122), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,22)(2,23)(3,24)(4,19)(5,20)(6,21)(7,127)(8,128)(9,129)(10,130)(11,131)(12,132)(13,67)(14,68)(15,69)(16,70)(17,71)(18,72)(25,77)(26,78)(27,73)(28,74)(29,75)(30,76)(31,111)(32,112)(33,113)(34,114)(35,109)(36,110)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,107)(44,108)(45,103)(46,104)(47,105)(48,106)(49,83)(50,84)(51,79)(52,80)(53,81)(54,82)(55,65)(56,66)(57,61)(58,62)(59,63)(60,64)(91,98)(92,99)(93,100)(94,101)(95,102)(96,97)(115,134)(116,135)(117,136)(118,137)(119,138)(120,133)(121,144)(122,139)(123,140)(124,141)(125,142)(126,143), (1,63)(2,64)(3,65)(4,66)(5,61)(6,62)(7,44)(8,45)(9,46)(10,47)(11,48)(12,43)(13,50)(14,51)(15,52)(16,53)(17,54)(18,49)(19,56)(20,57)(21,58)(22,59)(23,60)(24,55)(25,34)(26,35)(27,36)(28,31)(29,32)(30,33)(37,139)(38,140)(39,141)(40,142)(41,143)(42,144)(67,84)(68,79)(69,80)(70,81)(71,82)(72,83)(73,110)(74,111)(75,112)(76,113)(77,114)(78,109)(85,122)(86,123)(87,124)(88,125)(89,126)(90,121)(91,116)(92,117)(93,118)(94,119)(95,120)(96,115)(97,134)(98,135)(99,136)(100,137)(101,138)(102,133)(103,128)(104,129)(105,130)(106,131)(107,132)(108,127), (1,138,22,94)(2,133,23,95)(3,134,24,96)(4,135,19,91)(5,136,20,92)(6,137,21,93)(7,30,108,76)(8,25,103,77)(9,26,104,78)(10,27,105,73)(11,28,106,74)(12,29,107,75)(13,125,67,40)(14,126,68,41)(15,121,69,42)(16,122,70,37)(17,123,71,38)(18,124,72,39)(31,131,111,48)(32,132,112,43)(33,127,113,44)(34,128,114,45)(35,129,109,46)(36,130,110,47)(49,87,83,141)(50,88,84,142)(51,89,79,143)(52,90,80,144)(53,85,81,139)(54,86,82,140)(55,115,65,97)(56,116,66,98)(57,117,61,99)(58,118,62,100)(59,119,63,101)(60,120,64,102)>;

G:=Group( (1,76,80)(2,77,81)(3,78,82)(4,73,83)(5,74,84)(6,75,79)(7,144,138)(8,139,133)(9,140,134)(10,141,135)(11,142,136)(12,143,137)(13,57,31)(14,58,32)(15,59,33)(16,60,34)(17,55,35)(18,56,36)(19,27,49)(20,28,50)(21,29,51)(22,30,52)(23,25,53)(24,26,54)(37,102,45)(38,97,46)(39,98,47)(40,99,48)(41,100,43)(42,101,44)(61,111,67)(62,112,68)(63,113,69)(64,114,70)(65,109,71)(66,110,72)(85,95,103)(86,96,104)(87,91,105)(88,92,106)(89,93,107)(90,94,108)(115,129,123)(116,130,124)(117,131,125)(118,132,126)(119,127,121)(120,128,122), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,22)(2,23)(3,24)(4,19)(5,20)(6,21)(7,127)(8,128)(9,129)(10,130)(11,131)(12,132)(13,67)(14,68)(15,69)(16,70)(17,71)(18,72)(25,77)(26,78)(27,73)(28,74)(29,75)(30,76)(31,111)(32,112)(33,113)(34,114)(35,109)(36,110)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,107)(44,108)(45,103)(46,104)(47,105)(48,106)(49,83)(50,84)(51,79)(52,80)(53,81)(54,82)(55,65)(56,66)(57,61)(58,62)(59,63)(60,64)(91,98)(92,99)(93,100)(94,101)(95,102)(96,97)(115,134)(116,135)(117,136)(118,137)(119,138)(120,133)(121,144)(122,139)(123,140)(124,141)(125,142)(126,143), (1,63)(2,64)(3,65)(4,66)(5,61)(6,62)(7,44)(8,45)(9,46)(10,47)(11,48)(12,43)(13,50)(14,51)(15,52)(16,53)(17,54)(18,49)(19,56)(20,57)(21,58)(22,59)(23,60)(24,55)(25,34)(26,35)(27,36)(28,31)(29,32)(30,33)(37,139)(38,140)(39,141)(40,142)(41,143)(42,144)(67,84)(68,79)(69,80)(70,81)(71,82)(72,83)(73,110)(74,111)(75,112)(76,113)(77,114)(78,109)(85,122)(86,123)(87,124)(88,125)(89,126)(90,121)(91,116)(92,117)(93,118)(94,119)(95,120)(96,115)(97,134)(98,135)(99,136)(100,137)(101,138)(102,133)(103,128)(104,129)(105,130)(106,131)(107,132)(108,127), (1,138,22,94)(2,133,23,95)(3,134,24,96)(4,135,19,91)(5,136,20,92)(6,137,21,93)(7,30,108,76)(8,25,103,77)(9,26,104,78)(10,27,105,73)(11,28,106,74)(12,29,107,75)(13,125,67,40)(14,126,68,41)(15,121,69,42)(16,122,70,37)(17,123,71,38)(18,124,72,39)(31,131,111,48)(32,132,112,43)(33,127,113,44)(34,128,114,45)(35,129,109,46)(36,130,110,47)(49,87,83,141)(50,88,84,142)(51,89,79,143)(52,90,80,144)(53,85,81,139)(54,86,82,140)(55,115,65,97)(56,116,66,98)(57,117,61,99)(58,118,62,100)(59,119,63,101)(60,120,64,102) );

G=PermutationGroup([[(1,76,80),(2,77,81),(3,78,82),(4,73,83),(5,74,84),(6,75,79),(7,144,138),(8,139,133),(9,140,134),(10,141,135),(11,142,136),(12,143,137),(13,57,31),(14,58,32),(15,59,33),(16,60,34),(17,55,35),(18,56,36),(19,27,49),(20,28,50),(21,29,51),(22,30,52),(23,25,53),(24,26,54),(37,102,45),(38,97,46),(39,98,47),(40,99,48),(41,100,43),(42,101,44),(61,111,67),(62,112,68),(63,113,69),(64,114,70),(65,109,71),(66,110,72),(85,95,103),(86,96,104),(87,91,105),(88,92,106),(89,93,107),(90,94,108),(115,129,123),(116,130,124),(117,131,125),(118,132,126),(119,127,121),(120,128,122)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,22),(2,23),(3,24),(4,19),(5,20),(6,21),(7,127),(8,128),(9,129),(10,130),(11,131),(12,132),(13,67),(14,68),(15,69),(16,70),(17,71),(18,72),(25,77),(26,78),(27,73),(28,74),(29,75),(30,76),(31,111),(32,112),(33,113),(34,114),(35,109),(36,110),(37,85),(38,86),(39,87),(40,88),(41,89),(42,90),(43,107),(44,108),(45,103),(46,104),(47,105),(48,106),(49,83),(50,84),(51,79),(52,80),(53,81),(54,82),(55,65),(56,66),(57,61),(58,62),(59,63),(60,64),(91,98),(92,99),(93,100),(94,101),(95,102),(96,97),(115,134),(116,135),(117,136),(118,137),(119,138),(120,133),(121,144),(122,139),(123,140),(124,141),(125,142),(126,143)], [(1,63),(2,64),(3,65),(4,66),(5,61),(6,62),(7,44),(8,45),(9,46),(10,47),(11,48),(12,43),(13,50),(14,51),(15,52),(16,53),(17,54),(18,49),(19,56),(20,57),(21,58),(22,59),(23,60),(24,55),(25,34),(26,35),(27,36),(28,31),(29,32),(30,33),(37,139),(38,140),(39,141),(40,142),(41,143),(42,144),(67,84),(68,79),(69,80),(70,81),(71,82),(72,83),(73,110),(74,111),(75,112),(76,113),(77,114),(78,109),(85,122),(86,123),(87,124),(88,125),(89,126),(90,121),(91,116),(92,117),(93,118),(94,119),(95,120),(96,115),(97,134),(98,135),(99,136),(100,137),(101,138),(102,133),(103,128),(104,129),(105,130),(106,131),(107,132),(108,127)], [(1,138,22,94),(2,133,23,95),(3,134,24,96),(4,135,19,91),(5,136,20,92),(6,137,21,93),(7,30,108,76),(8,25,103,77),(9,26,104,78),(10,27,105,73),(11,28,106,74),(12,29,107,75),(13,125,67,40),(14,126,68,41),(15,121,69,42),(16,122,70,37),(17,123,71,38),(18,124,72,39),(31,131,111,48),(32,132,112,43),(33,127,113,44),(34,128,114,45),(35,129,109,46),(36,130,110,47),(49,87,83,141),(50,88,84,142),(51,89,79,143),(52,90,80,144),(53,85,81,139),(54,86,82,140),(55,115,65,97),(56,116,66,98),(57,117,61,99),(58,118,62,100),(59,119,63,101),(60,120,64,102)]])

180 conjugacy classes

class 1 2A···2G2H2I2J2K3A···3H4A···4H6A···6BD6BE···6CJ12A···12BL
order12···222223···34···46···66···612···12
size11···122221···12···21···12···22···2

180 irreducible representations

dim111111111122
type+++++
imageC1C2C2C2C3C4C6C6C6C12D4C3×D4
kernelC22⋊C4×C3×C6C32×C22⋊C4C2×C6×C12C22×C62C6×C22⋊C4C2×C62C3×C22⋊C4C22×C12C23×C6C22×C6C62C2×C6
# reps1421883216864432

Matrix representation of C22⋊C4×C3×C6 in GL4(𝔽13) generated by

9000
0300
0090
0009
,
4000
0400
00120
00012
,
1000
01200
00120
0081
,
1000
0100
00120
00012
,
5000
01200
0082
0005
G:=sub<GL(4,GF(13))| [9,0,0,0,0,3,0,0,0,0,9,0,0,0,0,9],[4,0,0,0,0,4,0,0,0,0,12,0,0,0,0,12],[1,0,0,0,0,12,0,0,0,0,12,8,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[5,0,0,0,0,12,0,0,0,0,8,0,0,0,2,5] >;

C22⋊C4×C3×C6 in GAP, Magma, Sage, TeX

C_2^2\rtimes C_4\times C_3\times C_6
% in TeX

G:=Group("C2^2:C4xC3xC6");
// GroupNames label

G:=SmallGroup(288,812);
// by ID

G=gap.SmallGroup(288,812);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,-2,1008,1037]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^6=c^2=d^2=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations

׿
×
𝔽